Сайт бесплатных объявлений для любителей неба

Объявления (32) Подать объявление

Мечта летать Учебное пособие по парапланеризму. (И.В. Волков)

[Здоровье] [История] [Методические пособия] [Инструкции, руководства] [Безопасность и сертификация парапланов] [Техническая литература] [Статьи] [Художественные произведения]
версия для печати

[ Методическое пособие по буксировочным полётам водных парашютов за катером. ]
  [ Мечта летать Учебное пособие по парапланеризму. (И.В. Волков) ]
[ Meтодическое пособие дня начальной учебно-летной подготовки спортсменов - парапланеристов по КУЛП-СД-88. (В.А. Тюшин) ]
[ Понять небо. (Дэннис Пэгин) ]
[ Введение в параглайдинг (Зигмунт Френкель) ]
[ Как люди научились летать. (Виктор Гончаренко) ]
[ Техника и тактика парящих полетов. (Виктор Гончаренко) ]
[ Движитель - воздушный винт ]
[ Законы парапланерной подлости ]
[ Равнинные полеты - стратегия и тактика ]
[ Приоритеты, тактика и удовольствие ]
[ Термик века: +14,32 м/с! ]
[ Why Paragliding Sucks ]
[ Чумак В., Кривокрысенко В. Расчет, проектирование и постройка сверхлегких самолетов ]
Страница 7 из 17     пред. 3 4 5 6 7 8 9 10 11 12 след.

ГЛАВА 4. АЭРОДИНАМИКА И ДИНАМИКА ПОЛЕТА ПАРАПЛАНА

l. Природа возникновения и численные характеристики аэродинамических сил.

Каждый человек в той или иной степени знаком с аэродинамическими силами. Вам, наверное, не раз приходилось наблюдать, как налетевший порыв ветра гнет деревья, поднимает в воздух листья, вырывает зонтики у прохожих. Что заставляет, казалось бы, неосязаемый воздух превращаться во вполне осязаемую среду? Логично будет предположить, что всему виной ветер. Именно ветер, а точнее, движение воздуха относительно предметов создает аэродинамические силы.

Высуньте руку из движущегося автомобиля. Вы почувствуете поток воздуха, взаимодействующего с рукой. Такое же явление можно наблюдать и в неподвижном автомобиле, если за бортом дует достаточной силы ветер. В аэродинамике применяют принцип относительности, согласно которому, для аэродинамических сил безразлично: движется ли предмет относительно воздуха или воздух движется относительно неподвижного предмета. Для удобства, предмет (твердое тело) считают неподвижным объектом, на который действует набегающий поток воздуха.

Итак, в результате взаимодействия твердого тела с набегающим потоком воздуха, образуется полная аэродинамическая сила.

аэродинамическая сила

 

R = C R   (l)

Величина этой силы определяется по формуле (l) и зависит от четырех параметров.

1. Характерная площадь ( S ) .Учитывает размеры твердого тела. Очевидно, что чем крупнее тело, тем больше сила его взаимодействия с воздухом.

2. Плотность воздуха (δ). У земли она меняется незначительно и ее влияние сложно заметить. На высоте воздух становится более разряженным, а снижение   плотности воздуха приводит к уменьшению полной аэродинамической силы.

3. Скорость набегающего потока ( V ). Очень важный параметр, так как в формуле присутствует в квадрате. Увеличение скорости в два раза приведет к четырехкратному возрастанию полной аэродинамической силы.

4. Коэффициент полной аэродинамической силы (С у ). Этот параметр учитывает форму и характер обтекания твердого тела. Тело, которое обтекается воздухом лучше, имеет небольшое значение и создает меньшую аэродинамическую силу. Как видно из рисунков, на величину и направление полной аэродинамической силы влияет не только форма, но и положение тела относительно потока. При определенном, несимметричном типе обтекания направление полной аэродинамической силы может существенно отличаться от направления набегающего потока. Этот эффект и используется в авиации для создания подъемной силы.

Подъемная сила - составляющая полной аэродинамической силы, направленная перпендикулярно набегающему потоку.

Сила сопротивления - составляющая полной аэродинамической силы, направленная параллельно набегающему потоку.

Проще всего почувствовать процесс образования подъемной силы с помощью плоской пластины. Меняя положение пластины относительно потока воздуха, Вы получите различные комбинации сил. Для примера могу вспомнить случай из своего детства.

подъемная сила

  Правдивая история. Мое первое знакомство с подъемной силой произошло во время дальней поездки в поезде. Махая рукой в потоке за окном, я заметил странную силу, подбрасывающую руку вверх. Это происходило если поставить ладонь под острым углом к потоку воздуха. Заменив ладонь красочной книгой младшей сестры (увеличение площади), я добился значительного роста сил. Стало понятно, что вертикальная сила (подъемная сила) растет с увеличением угла между плоскостью книги и потоком воздуха (угол атаки). Возрастает при этом и сила, толкающая руку назад (сила сопротивления). При превышении определенного угла (критический угол атаки) подъемная сила пропадала, а сила сопротивления многократно увеличивалась (происходил срыв потока). Конечно, все мудреные термины я узнал значительно позже, а на тот момент, очередной коварный срыв потока унес книгу и вызвал возникновение небольшой семейной драмы...

подъемная сила

Плоская пластина является посредственным источником подъемной силы из-за большой доли вредной силы сопротивления и малого критического угла атаки. Крылья большинства летательных аппаратов имеют определенную форму поперечного сечения (аэродинамический профиль крыла). Прямая, соединяющая максимально удаленные точки профиля крыла, называется хордой профиля (рис. 4 ).

хорда крыла

Рассмотрим процесс образования подъемной силы крыла. Профиль крыла делит поток воздуха на две части, которые объединяются за задней кромкой профиля. Верхняя часть профиля более выпуклая, чем нижняя. Поэтому, частицы воздуха, огибающие верхнюю и нижнюю поверхности, проделывают различный путь. Над верхней поверхностью молекулы воздуха движутся быстрее и располагаются реже, чем внизу. Возникает разрежение (известный закон Бернулли гласит, что с увеличением скорости потока уменьшается его давление). Разница давлений между верхней и нижней поверхностями крыла приводит к появлению подъемной силы, толкающей крыло вверх.

подъемная сила

Величина подъемной силы сильно зависит от угла, под которым набегающий поток «ударяется» в крыло. Угол между набегающим потоком и хордой профиля называется углом атаки. При увеличении угла атаки, точка деления потока воздуха смещается на нижнюю поверхность профиля. Путь частиц по верхней поверхности увеличивается. Из-за этого возрастает разница давлений и увеличивается подъемная сила (рис. 6).

угол атаки

Подобный рост подъемной силы возможен, пока угол атаки не достиг критического значения. На больших углах атаки воздух вынужден двигаться по сильно искривленной траектории. Возможен отрыв и завихрения потока в хвостовой части профиля. На критическом углу атаки отрыв потока распространяется на всю верхнюю поверхность профиля. Образуются мощные вихри. Подъемная сила пропадает, а сила сопротивления многократно увеличивается.

Это неприятное и опасное явление называют срывом потока. Столь не любимый пилотами режим «штопор», возникает из-за срыва потока. На одном из крыльев пропадает подъемная сила, и самолет падает, вращаясь как кленовый лист. Далее мы подробно рассмотрим все режимы и ограничения в полете, а пока вернемся к формулам.

Формулы для определения величины подъемной силы и силы сопротивления аналогичны формуле (l).

Y=C Y   (2)

 

X=C X   (3)

За S обычно принимают площадь крыла.

Коэффициент подъемной силы (С Y ) и коэффициент сопротивления (С X ) являются удельными характеристиками крыла и зависят от угла атаки, формы профиля и геометрии крыла. Они как бы показывают, сколько подъемной силы и силы сопротивления образуется на единице площади крыла. Наиболее ярко прослеживается уже знакомая нам зависимость от угла атаки (рис. 7)

Физический смысл коэффициентов: тела, имеющие одинаковую форму (при разных размерах), взаимодействуют с воздухом одинаково. Поэтому можно считать, что коэффициент подъемной силы равен подъемной силе некоего крыла (единичной площади), обтекаемого потоком единичной интенсивности.

срыв потока

Обратите внимание на то, что на малых углах атаки коэффициент подъемной силы возрастает быстрее коэффициента сопротивления. На больших углах атаки все наоборот. Если графики объединить, то мы получим очень важную зависимость С Y от С X - поляру крыла. С помощью поляры крыла легко найти   оптимальное соотношение коэффициентов подъемной силы и силы сопротивления (рис. 8).

Изученные в этом разделе формулы и графики пригодятся нам для анализа летных характеристик параплана. А мы переходим к рассмотрению различных режимов полета.

наивыгоднейший угол атаки

2 . Установившиеся (равновесные) режимы полета.

Что такое установившийся режим? Слово установившийся означает, что все параметры полета (скорость, снижение, курс) остаются постоянными. Это важное условие, так как и камень способен летать (недолго), но его полет не будет установившимся. (Рис. 9)

режим полета

Установившийся горизонтальный полет.

Изобразим самолет в установившемся горизонтальном полете в скоростной системе координат. Скоростная система координат удобна для анализа режимов полета и расчета аэродинамических сил. Ось Х расположена по направлению вектора скорости набегающего потока. Ось Z направлена «на нас» в плоскости крыла (перпендикулярно Х). Ось Y направлена «вверх» перпендикулярно плоскости XZ .

горизонтальный полет

На самолет действуют сила тяжести, подъемная сила, сила сопротивления и сила тяги двигателя. Согласно второму закону Ньютона, сумма всех этих сил равна нулю (в установившемся полете).

  (4)

Запишем это уравнение в проекциях на скоростную систему координат:

ось OY: Y-G=0 = > Y=G   (5)

ось ОХ: Х-Т=0 =>   Х=Т   (6)

Из уравнений следует, что подъемная сила уравновешивает силу тяжести, а сила тяги двигателя уравновешивает силу сопротивления. Равновесие этих сил и обеспечивает установившийся горизонтальный полет.

Установившееся планирование.

С самолетом понятно, у него есть двигатель. А за счет какой силы летит планер или параплан? Все дело в том, что установившийся полет планера не горизонтален. Планер «скользит» по наклонной траектории, и вместо двигателя работает проекция силы тяжести. Здесь идеально подходит аналогия с шариком, который скатывается по наклонной плоскости (рис. 11). Шарик движется за счет неуравновешенной проекции силы тяжести.

планирование

Пусть планер летит по траектории, имеющей угол Y с горизонтом. Вектор скорости уже не перпендикулярен силе тяжести, и имеет с ней угол. Подъемная сила всегда перпендикулярна вектору скорости. В итоге получаем систему сил (рис. 12).

планирование

Режим установившийся, поэтому сумма всех сил равна нулю.

G+Y+X=0   (7)

В проекциях на скоростную систему координат:

oyY - Gcos( ) = 0 => Y = Gcos( )   (8)

oxX - Gsin( ) = 0 => X = Gsin( )   (9)

Так как угол Y обычно мал, то приближенно можно считать, что

cos ( ) =   l , а Y = G

Итак, безмоторный летательный аппарат летит с постоянным снижением. От чего зависит скорость снижения? Из рисунка 12 можно найти проекции скорости на вертикальную и горизонтальную оси земной системы координат.

V гор = Vcos( ) = V   (10)

V сн   = Vsin ( )   (11)

Чем меньше угол Y , тем меньше скорость снижения. Как мы уже выяснили, угол Y образуется из-за необходимости компенсировать силу сопротивления. Соответственно, уменьшение силы сопротивления уменьшает скорость снижения.

В аэродинамике используется понятие аэродинамического качества, равного отношению коэффициентов подъемной силы и силы сопротивления.

К = Су/С X .   (12)

Из формул (2 и 3 ) получаем:

Cy/Cx = Y/X   (13)

Тогда

KCy/Cx = Y/X = tg( )   (14)

Аэродинамическое качество показывает, во сколько раз подъемная сила больше силы сопротивления. Так, при качестве 5 и весе пилота с парапланом в 100 кг, получаем:

У = 100 кг; Х = 20 кг.

С помощью аэродинамического качества, можно узнать какое расстояние пролетит пилот с имеющейся высоты (рис. 13). При качестве 5 пилот со 100 м пролетит 500 м.

аэродинамическое качество

 

Очевидно, что один из путей совершенствования летательных аппаратов - увеличение качества. У современных планеров качество превышает 50. А у спортивных парапланов оно приближается к 9.

Установившийся набор высоты.
Самолеты не только планируют, летают горизонтально, но и набирают высоту (имеется ввиду набор высоты в спокойном воздухе за счет тяги двигателя). На параплане такой режим возможен при полете с парамотором и буксировке за лебедкой. В этом случае движение так же происходит по наклонной   траектории, но «в горку».

набор высоты

Y+G+X+T = 0     (15)

В проекциях на оси:

oy Y-Gcos( ) = 0 ° => Y = Gcos( )   (8)

ох Х-Т sin ( ) = 0 => T = X + Gsin ( )   (9)

Сила тяги уравновешивает силу сопротивления и проекцию силы тяжести. Чем больше сила тяги, тем больший угол подъема она обеспечивает.

3. Скорость полета. Управление скоростью.

Диапазон скоростей полета.

Диапазон полетных скоростей параплана.

В предыдущих разделах мы считали, что летательный аппарат летит с какой-то определенной скоростью. От чего зависит скорость полета? В каких пределах меняется? Как ею управлять? С какой скоростью летать? В этой главе Вы получите ответы на все эти вопросы.

Скорость полета параплана.

Представьте себе, что вы взлетели. Успокоившись после суматохи старта, ваш параплан летит с постоянной скоростью (наступило равновесие сил). От чего зависит скорость полета? Вспомним уравнение установившегося планирования.

Y = G cos ( )

Подъемную силу можно определить по формуле:

Y = C y

О бъединяя уравнения, получаем формулу для определения скорости полета:

V 2   =

Из формулы видно, что скорость постоянна, пока постоянны все остальные параметры уравнения (полетный вес G, коэффициент подъемной силы Су, площадь крыла S , плотность воздуха) При их изменении равновесие сил нарушается. Полет перестает быть установившимся. Происходит переходный режим полета, во время которого меняется скорость полета и восстанавливается равновесие сил. В результате параплан переходит к новому (!) установившемуся режиму полета.

Пример: Вернемся к полетам. Представьте, что во время полета вам захотелось пошутить. В голову приходит отличная (банальная) идея окатить своих наземных друзей водичкой. Реализуя этот веселый проект, вы сбрасываете с параплана некую резиновую емкость с водой. На земле кто-то радуется, что это был не камень, а у вас происходит переходный процесс. Полетный вес уменьшился, подъемная сила осталась прежней. Равновесие сил нарушено - параплан тянет вверх. Это конечно не плохо, но равновесие нарушено и в другой паре сил. Сила сопротивления теперь больше, чем проекция уменьшившейся силы тяжести, и тянет параплан назад. Происходит торможение. Скорость полета снижается. Из-за этого аэродинамические силы уменьшаются и возвращаются к состоянию равновесия. Вы продолжаете полет на меньшей скорости, любуясь последствиями бомбардировки.

Итак, у нас появилась возможность проанализировать за счет чего и в каких пределах можно менять скорость полета.

Влияние полетного веса и площади крыла.

Часто можно услышать шутки над тяжелыми пилотами по поводу их летучести. Между тем, тяжелые пилоты создают меньшее удельное сопротивление и летают даже лучше легких! Им просто нужен большой параплан.

Вес и площадь связаны через величину удельной нагрузки:

= G / S

Если удельные нагрузки парапланов равны, то их скорости одинаковы. Легкий пилот на маленьком параплане будет лететь так же, как тяжелый - на большом.

Изменение удельной нагрузки часто используется спортсменами. Для увеличения веса применяют балласт - воду, заливаемую в специальный мешок. При необходимости балласт сливают (иногда на соперника). Увеличение веса на 10% приводит к увеличению скорости на 5%.

Нагруженный параплан летит быстрее и лучше управляется. Из-за повышенного давления в крыле у него реже происходят складывания. К сожалению, увеличение скорости полета вызывает возрастание скорости снижения.

С недогруженным парапланом легче летать в слабых условиях (меньше снижение). Но такой параплан хуже управляется и чаще складывается. С ним сложнее взлетать в сильный ветер из-за высокой «парусности».

Правдивая история: Как-то Кряжев Николай решил всех победить, и к Чемпионату России 96 г. пошил огромный параплан. По замыслу конструктора, маленькое снижение обеспечивало победу. К великому огорчению Коли, его шедевр вечно сдувало ветром и складывало от «чиха Кощея на северном полюсе». В дополнение к несчастьям, Колю дисквалифицировали за полеты без шлема.

Влияние плотности воздуха.

Чтобы заметить это влияние, нужно подняться на значительную высоту. Первый раз увеличение скорости за счет уменьшения плотности я заметил во время маршрутного полета на Кавказе. На высоте 4800 м мои «крейсерские» 38 км/ч превратились в 45 км/ч. Это здорово помогло быстрому прохождению 60 км маршрута. Не лишним будет напоминание об увеличении скорости на взлете. Иногда в горах приходится использовать лыжи, потому что «люди так не бегают».

 

Влияние коэффициента подъемной силы.

Все предыдущие параметры сложно использовать для управления скоростью. Для этого подходит коэффициент Су, который сильно зависит от угла атаки и формы профиля (рис. 15). На самолете угол атаки регулируют рулем высоты, а форму профиля закрылками и элеронами.

коэффициент подъемной силы

У параплана угол атаки и форма профиля меняется одновременно с помощью строп управления (клевант). Если вы летите с отпущенными клевантами, то Су минимален, а скорость максимальна (35...38 км/ч). Затягивая клеванты на полный допустимый ход, вы увеличиваете Су и уменьшаете скорость полета (20...22 км/ч).

Управление скоростью.

Как вы уже поняли, параплан управляется стропами управления. Затягивая или отпуская клеванты, пилот уменьшает или увеличивает скорость полета. Осталось разобраться, что происходит при переходном процессе управления.

Итак, вы опять в полете и, затягивая стропы управления, увеличиваете угол атаки. У крыла увеличился Су. Подъемная сила возрастает и становится больше силы тяжести. Равновесие сил нарушается. Вас ждет приятный эффект - параплан снижается медленней, а иногда даже набирает высоту. К сожалению, подобная роскошь длится не долго. Сила сопротивления тоже увеличилась и сильнее тормозит параплан. Скорость полета уменьшается, аэродинамические силы уменьшаются, равновесие сил восстанавливается. Параплан перешел к новому (!) (меньше скорость, больше угол атаки) установившемуся режиму полета (рис.16)

управление скоростью

«Горка» и «ямка».

Кратковременный набор высоты с помощью строп управления называют «горка». Им инстинктивно пользуются новички, пытающиеся любым способом покинуть грешную землю. Не забывайте, что при отпускании строп управления вас ждет обратный процесс «ямка». Происходит набор скорости за счет потери высоты. Действует закон сохранения энергии: кинетическая энергия скорости увеличивается за счет уменьшения потенциальной энергии высоты. Все как на велосипеде: едешь в горку - теряешь скорость, едешь с горки - набираешь скорость,

Минимальная скорость снижения.

Правдивая история: Ученики бывают разные. Но нет для инструктора большего горя, чем непослушный ученик. Однажды, на сборах в Крыму, мне достался редкий сплав упрямства, непослушания и тяги к экспериментам. Звали его Толик, и он очень хотел летать. Осваивая управление скоростью, Толик заметил, что при затягивании клевант уменьшается не только скорость полета, но и скорость снижения. В голове возникла идея: «Чем медленнее летишь, тем медленнее снижаешься, значит нужно лететь как можно медленнее». Забыв поговорку, в которой голова не давала покоя другим частям тела, Толик потянул клеванты дальше разрешенного мной положения. Сначала скорость снижения действительно уменьшалась, а потом параплан стал падать. Не знаю, кто из нас испугался больше, но глупого экспериментатора спас колючий куст шиповника, из которого мы долго выковыривали параплан.

В этом полете сделаны две ошибки. Первая - пилот превысил допустимый диапазон управления, заставляя параплан лететь слишком медленно. Угол атаки превысил критический. Произошел срыв потока, подъемная сила пропала, параплан упал. Вторая - при уменьшении скорости полета снижение сначала уменьшается, становится минимальным, а на малых скоростях полета начинает возрастать.

Толик не учел, что скорость снижения зависит от аэродинамического качества параплана. На малой скорости крыло обтекается воздухом под большим углом атаки. А на больших углах атаки возможно образование завихрений, из-за которых возрастает сопротивление и сильно уменьшается аэродинамическое качество параплана (К= С Y / С X ).

Вспомним график зависимости С Y от С X (поляра крыла, рис. 8). На основании этого графика можно получить зависимости качества и скорости снижения от скорости полета (рис. 17)

Величина качества и скорости снижения зависят от класса параплана. На моем параплане минимальная скорость снижения (1.0 M /с) достигается при скорости полета около 25...28 KM /ч, а максимальное качество полета (8.5) - при скорости З8 KM /ч.

мечта летать

Ограничения по скорости полета

Уменьшение скорости полета происходит за счет увеличения угла атаки крыла (рис. 18). Но угол атаки нельзя увеличивать больше критического значения из-за возникающего срыва потока. Скорость, при которой начинается срыв потока, называется минимальной скоростью полета. Запомните! Полет на скорости, близкой к минимальной, опасен!!! Угол атаки близок к критическому значению, и любое случайное возмущение (порыв ветра, чих Кощея и т. д.) может вызвать срыв потока (вспомните Толика), (рис. 19). Поэтому новичкам рекомендуют летать на большой скорости, используя полный ход управления лишь на посадке.

скорость полета

Итак, с нижним пределом скорости (около 20 км/ч) мы познакомились. Что же ограничивает верхний предел? При отпущенных стропах управления параплан летит на минимальном (установочном) угле атаки. Величину этого угла выбирают из соображений безопасности и задают конструкцией стройной системы параплана. Такой угол атаки и обеспечивает максимальную установочную скорость полета. Обычно это 35...38 км/ч

При необходимости, скорость полета можно увеличить. Для этого используют специальное приспособление - акселератор. Выжимая ногами подножку акселератора, пилот меняет геометрию стропной системы. Угол атаки уменьшается. Скорость возрастает.

Применение акселератора позволяет разогнать современный спортивный параплан до скорости 50...55 км/ч. Это и является верхней границей скорости (рис. 18). Дальнейшее увеличение скорости опасно. Мягкое крыло работает на очень маленьком угле атаки и может сложиться из-за атмосферной турбулентности (рис. 19)

мечта летать

Безопасная скорость полета

Новички часто пугаются: медленно летать опасно, быстро опасно, так куда же деваться? Не бойтесь. Во-первых, опасны лишь границы скоростного диапазона, а во-вторых, учебный параплан устойчив, его трудно довести до опасного режима. В случае же возникновения опасной ситуации, параплан способен самостоятельно возвращаться к нормальному полету.

Оптимальной считается скорость, обеспечивающая максимальный запас в сторону увеличения и уменьшения угла атаки. В этом случае, даже очень сильное возмущение не выведет угол атаки из допустимого диапазона. Обычно, такая скорость достигается при немного затянутых клевантах - примерно 10...20% от максимально допустимого хода. Как показывает опыт, этот режим наиболее комфортен, и им часто пользуются как новички, так и профессионалы.

4. Управление направлением полета.

Динамика поворотов.

«Древесная» статистика. Что новичка всегда умиляет в параплане, так это кажущаяся простота. В руках всего две стропы управления. Нужно влево - тянешь левую стропу, вправо - правую. Между тем, редкое дерево, имевшее несчастье вырасти вблизи учебной горки, не познало радость встречи с парапланеристами. Увидев препятствие, пилот начинает нервно дергать клеванты, и, окончательно запутавшись в двух стропах управления, гнездится на дереве.

Мораль сей басни такова: параплан входит в разворот с запаздываем в 1-2 секунды, и, дергая за клеванты трудно добиться чего-либо, кроме раскачки. Плавно затяните клеванту и ждите, пока параплан не войдет в режим поворота.

Для ввода параплана в режим поворота достаточно создать перепад в положении клевант. Представьте, что вы затянули только правую стропу управления. Правая половина тормозит, и летит медленнее левой. Крыло параплана поворачивает, а вы пока еще летите прямо (вот почему запаздывание!). Из-за этого разногласия возникает крен. Появляется проекция подъемной силы, которая меняет направление вашей скорости и уравновешивает появляющуюся центробежную силу.

динамика поворотов

При повороте появляется перегрузка, так как на вас действует не только сила тяжести, но и центробежная сила, возникающая при изменении направления скорости. Эта же сила толкает пассажиров при повороте автомобиля. Чем интенсивней поворот, тем больше центробежная сила. При резком повороте параплана она вызывает значительный крен и перегрузку, нежелательные для начинающих пилотов.

При повороте, части крыла двигаются на разных скоростях и обтекаются под разными углами атаки. Помните, что сорвать можно не только все крыло, но и его часть! В этом случае параплан начинает быстро вращаться и падает. Не превышайте допустимого хода клевант.

Глубокая спираль. Так называют длительный (несколько витков) интенсивный поворот с перегрузкой. Из-за перегрузки (до 3 G) сильно возрастают скорость полета (до 100 км/ч) и скорость снижения (до 18 м/с). Внешняя к повороту часть крыла движется быстрее внутренней, и может сминаться, так как работает на малом угле атаки. В режим глубокой спирали можно входить лишь при должном опыте.

5. Устойчивость параплана.

Из воспоминаний пилота: «Лечу я как-то раз на параплане, а погода дрянь. В воздухе болтанка, крыло качается как пьяное, но летит устойчиво. И тут....»

Всевозможные возмущения (порывы ветра, управление и т. д.) выводят параплан из состояния равновесия. Способность летательного аппарата самостоятельно возвращаться к заданному режиму полета называется устойчивостью. Различают устойчивость по курсу, крену и тангажу

Курс, крен и тангаж - углы, определяющие положение летательного аппарата относительно земли.

устойчивость параплана

Устойчивость самолета обеспечивают киль, стабилизатор, строгая центровка и т. д. У параплана все проще - он устойчив за счет низкого положения центра тяжести (похож на большой маятник). Если крыло швырнуло шальным порывом ветра, то сила тяжести возвратит параплан в полетное положение.

Устойчивость по тангажу.

Обычно крыло параплана находится над головой пилота. В результате внешнего воздействия или управления крыло может оказаться сзади или впереди пилота. Происходит это из-за инерции пилота. Крыло значительно легче пилота. При изменении режима (например, торможение) легкое крыло тормозит, а тяжелый пилот летит дальше (по инерции). Крыло оказывается сзади пилота (рис. 21). Вот тут-то и срабатывает эффект маятника. Сила тяжести возвращает пилота под крыло, он проскакивает положение равновесия и крыло оказывается впереди. Процесс повторяется и продолжается, пока колебания не затухнут. Скорость затухания колебаний определяется демпфирующей способностью параплана. Хороший параплан демпфируется за 1...2 колебания.

Устойчивость по крену и курсу.

Все процессы похожи на описанные выше. Особенность в том, что крен параплана вызывает изменение курса. Поэтому, при колебаниях по крену, параплан будет «рыскать» по курсу.

Почему нежелательны колебания?

Редкий пилот радуется, когда крыло начинает качаться над его головой. Параплан быстрее снижается, пилота трясет в подвеске, но это мелочи. Основная неприятность в том, что при колебаниях крыло параплана приближается к критическим углам атаки. Когда ваше крыло бросает назад, угол атаки увеличен (опасность срыва), а когда крыло ныряет вперед, угол атаки уменьшен (опасность складывания).

Правдивая история: Как-то раз мне попался не в меру впечатлительный ученик. После лекции о вреде колебаний он стал их панически бояться. С легонько качнувшимся парапланом начиналась неумелая борьба, и он превращался в такие «крылатые качели», что я зажмуривал глаза. К счастью для ученика, учебный параплан обладал большим запасом устойчивости и не складывался даже на самых лихих маневрах.

Не нужно бояться колебаний. Это нормальный процесс, который сопровождает полет параплана. Возникающие колебания можно легко демпфировать (гасить) с помощью правильного (активного) управления.

колебания параплана

 

 

Демпфирование колебаний.

Три совета пилотам:

1. Не провоцируй! Не нужно вызывать колебания самому. Резкое «нервное» пилотирование приводит к тому, что параплан быстро меняет режимы полета и сильно раскачивается. Плавное «ласковое» пилотирование позволяет параплану постепенный переход к новому режиму и существенно уменьшает колебания.

2. Не усугубляй! Если колебания возникли, а вы еще не умеете их гасить, то лучше не помогайте параплану. Новичкам часто говорят: «Не мешай параплану лететь» При демпфировании колебаний очень легко сделать все наоборот и усилить раскачку параплана. Пусть ваше верное крыло самостоятельно вернется в нормальный режим полета, оно на это рассчитано.

3. Помогай! Вы можете помочь параплану умелыми действиями. Когда крыло обгоняет (ныряет), его нужно притормозить клевантами. Когда крыло забрасывает назад, его нужно разогнать (поднять клеванты). В момент, когда крыло замирает в крайних положениях (впереди или сзади), нужно плавно переводить клеванты в нейтральное положение.

То же самое с колебаниями по крену. Нужно притормаживать поднимающуюся сторону крыла, а в верхней точке переводить клеванты в нейтральное положение (рис. 23)

демпфирование колебаний

Активное пилотирование.

Правдивая история: Как-то раз, во время полетов в Крыму, мне довелось попасть в жуткую «болтанку». Купол шатался из стороны в сторону, меня трясло в подвеске, а где-то внизу металась земля. Ошалев от «букета» неприятных ощущений, я во все глаза смотрел на крыло и пытался уменьшить его колебания. Внезапно перед глазами возник склон горы. Поворачивать было поздно. Проклиная собственную глупость, я успел сгруппироваться, и довольно мягко рухнул на каменную осыпь. Пыль и камни вскоре улеглись, а мой потрясенный организм еще долго приходил в себя, наблюдая за пролетающими рядом пилотами. Вот тогда то я и обратил внимание, что опытные пилоты редко смотрят на купол и при этом весьма успешно демпфируют колебания. Точными движениями клевант они «ловили» крыло, сглаживая и смягчая удары кипящего воздуха. В результате, их спортивные парапланы летели спокойней моего учебного. Осмыслив сей факт, отряхнувшись и обозвал себя «чайником», я отправился к инструктору за советом...

Идея активного пилотирования состоит в том, что пилот старается сохранить установившийся (равновесный) режим полета. Работая стропами управления, пилот компенсирует влияние порывов ветра так, чтобы аэродинамические силы крыла оставались постоянными. В этом случае не нарушается равновесие сил и параплан не раскачивается.

Итак, я вновь отправляю вас в полет. Представьте, что в ваш параплан «ударяет» порыв ветра. Увеличивается скорость набегающего потока, возрастают подъемная сила и сила сопротивления. Вы чувствуете перегрузку, параплан подбрасывает вверх, начинаются колебания. Когда порыв стихнет, подъемная сила и сила сопротивления уменьшатся. Вы почувствуете «разгрузку» крыла, параплан провалится вниз и опять начнутся колебания.

А теперь попробуем применить активное пилотирование. В момент, когда подъемная сила увеличивается, и вы чувствуете перегрузку, нужно отпустить стропы управления. Этим действием вы уменьшите подъемную силу и скомпенсируете порыв ветра. Когда подъемная сила уменьшается (разгрузка), стропы управления следует затянуть. Вот и вся премудрость!

Самое удачное, что при активном пилотировании не обязательно смотреть на параплан. Всю информацию об изменении режима полета вы получаете через нагрузку на крыле и клевантах. Держите постоянную нагрузку - вот золотое правило активного пилотирования.

Попадая в «болтанку», переводите параплан на наиболее безопасную скорость полета и следите за нагрузкой на крыле и клевантах. Параплан сам подсказывает, когда и на сколько нужно затянуть или отпустить стропы управления. Особое внимание стоит уделить симметричности нагрузки по размаху. Если на части крыла пропадает нагрузка, то эта часть может сложиться.

Плавное и красивое пилотирование получится не сразу. Тренируйтесь, анализируйте разные варианты возмущений. Хороший пилот должен понимать, что происходит с парапланом. Прислушивайтесь к собственным ощущениям, постарайтесь научиться чувствовать поведение параплана. Постепенно в ваших действиях появится необходимый автоматизм, и вы сможете испытать потрясающее ощущение «слияния с парапланом». Верное крыло становиться как бы частью тела и послушно отзывается на малейшее движение.

Страница 7 из 17     пред. 3 4 5 6 7 8 9 10 11 12 след.

[Здоровье] [История] [Методические пособия] [Инструкции, руководства] [Безопасность и сертификация парапланов] [Техническая литература] [Статьи] [Художественные произведения]

На главную |


Личный кабинет

Зарегистрируйтесь на нашем сайте и получите доступ к дополнительным разделам и расширенным настройкам!

Поиск

полнотекстовой поиск по сайту с элементами морфологии

НОВОСТИ

12 мая 2015 года, 16:38
Полет над Дубаи на реактивном ранце

Пилот-изобретатель из Швейцарии Ив Росси опубликовал видео на котором он с напарником Венсом Реффетом летает над городом Дубаи на собственно ручно спроектированном реактивном ранце-крыле Jet Man.

03 апреля 2015 года, 16:12
Чемпионат России PGA 2015 года

7-ой национальный Чемпионат парапланеристов в дисциплине полёт на точность пройдет с 1 по 10 мая в нашей стране.


Новые объявления

купля-продажа снаряжения

Ваше мнение

выразить свое мнение
Я имею возможность купить параплан
  Проголосовало: 361

Фотоальбом

случайные фото
Тренировка Леди Акро была организована фирмой Airwave на озере Идро в Италии. (с 21 по 23 июня 2010 года. День третий)
Место старта
декадрь 2003
Виола стартует
Юца 22 июля 2003 года




Ссылки

Парадром Чегем
Клуб свободно Летающих Пилотов «НАлетай»

Объединение SkyWolf

[Новости] [Самолеты] [Парапланы] [Полезное] [Фото] [Развлечения] [Контакты]

Airwave

Летай свободно!

На счету Airwave 6 титулов Чемпиона Мира, 7 титулов Чемпиона Европы, многократные победы в легендарных соревнованиях за Кубок Америки, как и более чем 100 побед – на национальных чемпионатах.

Узнать больше >>>

Facebook

Следите за нами на Facebook!

Посетите страницу «Paravia.RU» на Facebook и нажмите «Мне нравится», чтобы первым получать новости о продуктах и специальных предложениях!

Узнать больше >>>

Airwave PUMA

PUMA - полностью рефлексное парамоторное крыло

Самая последняя и лучшая разработка парамоторного крыла от Airwave.

Узнать больше >>>

Eurostar

Первым делом, первым делом самолеты...

Сегодня компания Evektor-Aerotechnik – является одним из мировых лидеров в производстве ультралегких самолетов.

Узнать больше >>>